09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ LOCATION.—Lat 33° 34'23", long 110° 54'02", in NE_{1/4}NW_{1/4}SE_{1/4} sec. 26, T.3 N., R.14 E., Gila County, Hydrologic Unit 15060103, in Tonto National Forest, on right bank 7 ft upstream from Inspiration Dam, 3.8 mi upstream from mouth, and 14 mi northwest of Globe. **DRAINAGE AREA**.-195 mi², of which about 33 mi² is partly or entirely noncontributing due to mining operations (1988). ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1980 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,740 ft above sea level, from topographic map. Prior to Feb. 12, 1991, at datum 1.0 ft higher. **REMARKS.**--No estimated daily discharge. Records fair. Since Nov. 20, 1999, base flows may be affected by discharges from a ground-water treatment plant, located about 5 mi uostream from the cace. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,700 ft³/s Jan. 11, 1993, gage height, 8.50 ft, on basis of slope-area measurement of peak flow; minimum daily, 0.64 ft³/s July 1, 1999. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft³/s and (or) maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height (ft) | |----------|------|--------------------------------|------------------| | Oct. 6 | 2125 | 849 | 3.38 | | Sept. 10 | 1500 | *2,520 | *5.12 | Minimum daily discharge, 1.4 ft³/s Aug. 15, Sept. 2. | | | | DISCHARGE | CUBIC | FEET PER | | WATER Y
Y MEAN V | EAR OCTOBER
ALUES | 2001 TO |) SEPTEMBER | 2002 | | |----------|-----------|--------------------------|---------------------------------|---------|-------------------|-------|---------------------|-----------------------------------|---------|-------------------|----------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5.0 | 7.4 | 6.9 | 6.7 | 6.2 | 5.5 | 4.9 | 4.0 | 2.8 | 1.7 | 1.7 | 1.5 | | 2 | 5.1 | 7.1 | 6.7 | 6.7 | 6.1 | 5.5 | 4.9 | 4.1 | 2.7 | 1.7 | 1.7 | 1.4 | | 3 | 5.0 | 7.3 | 6.7 | 6.6 | 6.2 | 5.6 | 4.8 | 4.1 | 2.7 | 1.7 | 2.1 | 1.5 | | 4 | 4.9 | 7.4 | 7.2 | 6.6 | 6.1 | 5.6 | 4.9 | 4.0 | 2.5 | 1.9 | 2.2 | 1.7 | | 5 | 4.9 | 7.5 | 6.6 | 6.5 | 6.0 | 5.6 | 4.9 | 4.0 | 2.3 | 1.6 | 2.0 | 1.8 | | 6 | 66 | 7.5 | 6.6 | 6.5 | E 0 | E 6 | 4.0 | 2.0 | 2.2 | 1.8 | 2.0 | 1.8 | | 7 | 16 | | | 6.5 | 5.9 | 5.0 | 4.9 | 3.9
3.9
3.5
4.0
3.7 | 2.3 | 1.8 | | | | | | 7.7 | 6.8 | 6.3 | 6.0 | 5.6 | 5.0 | 3.9 | 2.5 | 1.9 | 2.0 | 2.0 | | 8 | 6.8 | 7.6 | 6.9 | 6.0 | 6.5 | 5.8 | 4.9 | 3.5 | 2.5 | 1.8 | 1.9 | 2.3 | | 9 | 6.6 | 7.2 | 6.8 | 6.4 | 6.0 | 5.5 | 5.0 | 4.0 | 2.4 | 1.9 | 1.8 | 2.3 | | 10 | 6.7 | 6.5 | 6.7 | | 5.6 | 5.4 | 4.8 | 3.7 | 2.3 | 2.1 | 1.7 | 202 | | 11 | 6.2 | 6.3
6.7
6.6
6.4 | 6.8
6.7
6.9
6.9
7.2 | 6.9 | 5.6 | 5.4 | 4.7 | | 2.3 | 2.3 | 1.6 | 7.8 | | 12 | 6.3 | 6.3 | 6.7 | 6.8 | 5.6
5.3
5.7 | 5.6 | 4.5 | 3.8 | 2.3 | 1.8 | 1.7 | 4.6 | | 13 | 6.3 | 6.7 | 6.9 | 6.8 | 5.3 | 5.2 | 4.5 | 4.0 | 2.5 | 1.7 | 1.9 | 4.3 | | 14 | 6.5 | 6.6 | 6.9 | 6.7 | 5.7 | 5.4 | 4.6 | 4.0 | 2.3 | 1.7
1.6
1.9 | 1.7 | 3.9 | | 15 | 6.4 | 6.4 | 7.2 | 6.7 | 6.0 | 5.4 | 4.7 | 3.8
4.0
4.0
4.0 | 2.3 | 1.9 | 1.4 | 3.6 | | 16 | 6.3 | 6.2 | 7.2 | 6.8 | 6.0 | 5.4 | 4.9 | 3.7 | 2.0 | 1.9 | 1.8 | 3.5 | | 17 | 6.9 | 6.3 | 7.0 | 6.9 | 5.6 | 5.4 | 4.5 | 3.7 | 1.8 | 2.0 | 1.9 | 4.0 | | 18 | 6.9 | 6.4 | 7.1 | 7.1 | 5.6 | 5.4 | 4.6 | | 1.9 | 1.9 | 1.8 | 3.8 | | 19 | 6.9 | 6.6 | 6.8 | 6.8 | 5.5 | 5.3 | 4.3 | | 2.1 | 1.7 | 1.7 | 3.8 | | 20 | 6.8 | 6.9 | 6.8 | 6.5 | 5.5 | 5.3 | 4.6 | | 2.2 | 1.8 | 1.7 | 3.5 | | 21 | 6.9 | 6.8 | 6.7 | 6.5 | 5.5 | 5.3 | 4.8 | 2 5 | 1.9 | 1.7 | 1.8 | 3.0 | | | 7.0 | 6.5 | | 6.5 | 5.5 | 5.3 | 4.6 | | 2.8 | 1.7 | 1.7 | 3.1 | | 22
23 | 7.0 | 6.4 | 6.8 | 6.4 | 5.7 | 5.3 | | 3.5 | 2.8 | 1.7 | 1.7 | 3.1 | | | | 6.2 | 6.5 | 5.9 | | | 4.9
4.5 | 3.0 | | | | | | 24 | 7.1 | | 7.1 | | 5.8 | 5.4 | | 3.3 | 1.8 | | 1.7 | 3.2 | | 25 | 7.0 | 6.6 | 7.2 | 6.3 | 5.5 | 5.2 | 4.4 | 3.2 | 1.8 | | 1.7 | 3.1 | | 26 | 7.3 | 6.5
6.5
6.6
6.7 | 7.1 | 6.5 | 5.3 | 5.3 | 4.2 | 3.7
3.8
3.0
3.2
3.0 | 1.8 | 1.9 | 2.4 | 2.7 | | 27 | 7.2 | 6.5 | 6.9 | 6.5 | 5.2 | 5.0 | 4.2 | 3.8 | 1.7 | 1.8 | 1.5 | 3.1 | | 28 | 6.6 | 6.5 | 7.1 | 6.5 | 5.5 | 4.9 | 4.3 | 3.0 | 1.6 | 1.8 | 1.8 | 3.1 | | 29 | 7.1 | 6.6 | 7.3 | 6.4 | | 5.0 | 4.2 | 3.2 | 1.8 | 1.7 | 2.2 | 3.0 | | 30 | 6.4 | 6.7 | 7.3 | 6.6 | | 5.0 | 4.1 | 3.0 | 1.8 | 1.8 | 1.7 | 3.2 | | 31 | 6.3 | | 7.3 | 6.4 | | 5.0 | | 3.1 | | 1.7 | 1.6 | | | TOTAL | 268 5 | 203 2 | 214 6 2 | 03 4 | 161 0 | 166 2 | 139 1 | 114.6 | 65.7 | 56.0 | 56.1 | 291.6 | | MEAN | 8 661 | 6 773 | 6 923 6 | 561 | 5 750 | 5 361 | 4 637 | 3 697 | | | 1.810 | 9.720 | | MAX | 66 | 7 7 | 7 3 | 7 1 | 6.5 | 5.8 | 5.0 | 4 1 | | | 2.4 | 202 | | MIN | 1 0 | 6.2 | 6.5 | 5 0 | 5.2 | 1 0 | 1 1 | 3.0 | 1.6 | | 1.4 | 1.4 | | AC-FT | 522 | 403 | 426 | 403 | 210 | 330 | 276 | 227 | 130 | | 111 | 578 | | CFSM | 0.04 | 403 | 0.04 | U U3 | 0 03 | 0 03 | 0 02 | 0.02 | 0 01 | 0.01 | 0.01 | 0.05 | | IN. | 0.04 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 4.1
3.0
227
0.02
0.02 | 0.01 | 0.01 | 0.01 | 0.05 | | STATIST | | | | | | | | ER YEAR (WY) | | | | | | MEAN | 9.636 | 7.807 | | 0.44 | 28.58 | 15.68 | 9.787 | 8.036 | 6.306 | 7.769 | 8.546 | 7.484 | | MAX | 38.8 | 13.0 | | 440 | | 67.3 | 30.1 | | 16.2 | | 28.4 | 16.4 | | (WY) | 1984 | | | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1981 | 1990 | 1983 | | MIN | 2.56 | 3.72 | 3.37 | 3.20 | 3.44 | 3.55 | 3.46 | 2.38 | 1.07 | 1.81 | 1.81 | 2.81 | | (WY) | 2000 | 1999 | 1985
3.37
1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 1999 | 2002 | 2002 | 1989 | | SUMMARY | Y STATIST | ICS | FOR 200 | 1 CALEN | DAR YEAR | F | OR 2002 | WATER YEAR | | WATER YEAR | S 1980 - | 2002 | | ANNUAL | TOTAL | | | 2188.7 | | | 1940. | | | | | | | ANNUAL | MEAN | | | 5.99 | 6 | | 5. | .315 | | 12.47 | | | | HIGHEST | r annual | MEAN | | | | | | | | 84.2 | | 1993 | | LOWEST | ANNUAL M | EAN | | | 0-4 | | 000 | Sep 10
.4 Aug 15
.6 Aug 30 | | 3.76 | T 11 | 1999 | | HIGHEST | DATLY M | LAN | | 2 (| UCT 6 | | 202 | sep 10 | | 3300 | Jan Il | 1993 | | TOMEDI. | DWITT ME | A WLMLMina
Tana | | 2.0 | Jul 3 | | 1. | . T MUG 15 | | 0.64
0.72 | Jun 25 | 1990 | | ANNITAT. | RINOFF (| AC-FT) | | 4340 | 0 un 23 | | 3850 | | | 9030 | 0 am 23 | 1000 | | ANNUAL | RUNOFF (| CFSM) | | 0.03 | 1 | | 0. | .027 | | 0.06 | 4 | | | ANNUAL | RUNOFF (| INCHES) | | 0.42 | | | 0. | .37 | | 0.87 | | | | 10 PERG | CENT EXCE | EDS | | 7.7 | | | 6. | . 9 | | 12 | | | | 50 PERG | CENT EXCE | EDS | | 6.3 | | | 5. | | | 7.2 | | | | 90 PERG | JENT EXCE | EDS | | 3.9 | | | 1. | . 8 | | 3.9 | | | | | | | | | | | | | | | | | # 09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED WATER-QUALITY RECORDS PERIOD OF RECORD.--Nov. 1979 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date DEC 20 | Time
1035 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-
BID-
ITY
(NTU)
(00076) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |--|--|--|---|---|---|--|--|---|--|---|---|--|--| | MAR
29 | 1130 | 4.9 | .51 | 686 | 8.5 | 100 | 7.6 | 2140 | 19.5 | 17.7 | 1100 | 1200 | 371 | | JUN
11 | 1250 | 2.4 | . 57 | 686 | 7.1 | 97 | 7.6 | 2190 | 33.0 | 25.4 | 1200 | 1200 | 377 | | SEP | | | | | | | | | | | | | | | 06 | 1210 | 2.0 | .97 | 687 | 7.3 | 101 | 7.0 | 2250 | 30.5 | 25.8 | 1200 | 1200 | 389 | | Date | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | DEC 20 | 368 | 64.0 | 64.0 | 4.50 | .7 | 56.0 | 48 | 58 | <1 | 56.0 | 1.1 | 1210 | <1c1 | | MAR
29 | 370 | 60.0 | 59.0 | 4.40 | .8 | 61.0 | 46 | 56 | <1 | 54.0 | 1.0 | 1200 | 3 | | JUN 11 | 401 | 63.0 | | 4.20 | .9 | 69.0 | 45 | 55 | <1 | | | | <1 | | SEP | | | 66.0 | | | | | | | 55.0 | 1.0 | 1250 | | | 06 | 387 | 63.0 | 64.0 | 5.30 | . 8 | 65.0 | 45 | 55 | <1 | 59.0 | 1.0 | 1250 | <1 | | | | | | | | | | | | | | | | | Date | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
(71845) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | Date DEC 20 | DIS-
SOLVED
(TONS
PER
AC-FT) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | MONY,
DIS-
SOLVED
(UG/L
AS SB) | | DEC
20
MAR | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
(71845) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC
20
MAR
29
JUN | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960cl | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633)
E7k
E4k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
E2k
E6k | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC 20 MAR 29 JUN 11 SEP | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43
2.65 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960c1
1950 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780
1780 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.02
<.02 | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340)
8
<5 | MTEC MF
WATER
(COL/
100 ML)
(31633)
E7k
E4k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
E2k
E6k | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC
20
MAR
29
JUN
11 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960cl | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MTEC MF
WATER
(COL/
100 ML)
(31633)
E7k
E4k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
E2k
E6k | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC 20 MAR 29 JUN 11 SEP 06 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43
2.65
2.38
2.82 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960c1
1950 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780
1780
1850
1860 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.02
<.02 | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340)
8
<5 | MTEC MF
WATER
(COL/
100 ML)
(31633)
E7k
E4k | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625)
E2k
E6k | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | | DEC 20 MAR 29 JUN 11 SEP 06 Date | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43
2.65
2.38
2.82
ANTI-
MONY,
TOTAL
(UG/L
AS SB) | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (US- SOLVED (UG/L AS AS) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780
1780
1850
1860 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 SOLVED (UG/L AS BA) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 .02 .01 EBARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) | GEN, AMMONIA (MG/L AS NH4) (71845) .03 .01 .03 .01 .03 .01 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) | PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.03 C.04 C.05 C.05 C.06 C.07 C.07 C.08 C.08 C.08 C.09 | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) | MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) | FORM, FECAL, 0.7 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) | | DEC 20 MAR 29 JUN 11 SEP 06 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
2.43
2.65
2.38
2.82
ANTI-
MONY,
TOTAL
(UG/L
AS SB)
(01097) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960c1
1950
2070
ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780
1850
1860
ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 <.20 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 .02 .01 EBARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) (01007) | GEN, AMMONIA (MG/L AS NH4) (71845) .03 .01 .03 .01 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.02
<.02
<.02
<.02
<.02
IBORON,
TOTAL
RECOV-
ERABLE
(UG/L
AS B)
(01022) | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) | MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027) | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | | DEC 20 MAR 29 JUN 11 SEP 06 Date Dec 20 MAR 29 JUN | DIS-
SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI-MONY, TOTAL (UG/L AS SB) (01097) <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) E1960c1 1950 2070 ARSENIC DIS- SOLVED (UG/L AS AS) (01000) <2 <1 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1780 1780 1850 1860 ARSENIC TOTAL (UG/L AS AS) (01002) <2 <1 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 SALUED (UG/L AS BA) (01005) 9.4 8.7 | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 BARIUM, TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 9.7 9.0 | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 .03 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <1 | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020) 53 48 | PHORUS TOTAL (MG/L AS P) (00665) <.02 <.02 <.02 <.02 <.02 d.02 4.02 BORON, TOTAL RECOV-ERABLE (UG/L AS B) (01022) 49 50 | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.5 <.5 | MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLIRD TOTAL (UG/L AS (OJ027) <.5 <.5 | FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E2k E6k 35 CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 <1 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 | | DEC 20 MAR 29 JUN 11 SEP 06 Date Dec 20 MAR 29 | DIS-
SOLVED (TONS PER AC-FT) (70303) 2.43 2.65 2.38 2.82 ANTI-MONY, TOTAL (UG/L AS SB) (01097) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
E1960c1
1950
2070
ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | SUM OF
CONSTI
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1780
1850
1860
ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 1.1 <.20 <.20 <.20 <.20 C.20 GRAIUM, DIS- SOLVED (UG/L AS BA) (01005) | GEN, AMMONIA TOTAL (MG/L AS N) (00610) .02 .01 .02 .01 BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | GEN, AMMONIA TOTAL (MG/L AS NH4) (71845) .03 .01 .03 .01 BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010) | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <.020 <.020 <.020 <.020 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) 1.1 BORON, DIS- SOLVED (UG/L AS B) (01020) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.02
<.02
<.02
<.02
<.02
description of the control th | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 8 <5 <5 CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.5 | MTEC MF WATER (COL/ 100 ML) (31633) E7k E4k E8k 100 CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027) | FORM, FECAL, 0.7 .7 .0.7 .0.7 .0.8 .0.8 .0.9 .0.8 .0.9 | MONY, DIS- SOLVED (UG/L AS SB) (01095) <1 <1 <1 <1 <1 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | # 09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | |---------------------------------|---|--|--|--|--|--|---|--|---|---|---|--|--| | DEC | | | | | | | | | | | | | | | 20
MAR | <2 | <2 | <2 | 100 | <2 | <2 | 240 | 314 | <.10 | <.1 | 5 | 4 | <2 | | 29
JUN | <2 | 2 | 2 | 48 | <2 | <2 | 196 | 243 | <.10 | <.1 | 3 | 4 | <1 | | 11
SEP | <2 | 2 | <2 | 25 | <2 | <2 | 225 | 236 | <.10 | <.1 | 4 | 4 | <1 | | 06 | 2 | <2 | 2 | 15 | <2 | <2 | 175 | 186 | <.10 | <.1 | 3 | 4 | <1 | | Date | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | STRON-
TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | THAL-
LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | THAL-
LIUM,
TOTAL
(UG/L
AS TL)
(01059) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | | | | DEC 20 | <4 | <1 | <1 | 1180 | <2 | <2 | 23 | 10 | 1.0 | .02 | | | | | MAR | · - | - | · - | | _ | | | | | | | | | | 29
JUN | <1 | <1 | <1 | 1130 | <2 | <2 | 7 | 4 | 1.0 | .01 | | | | | 11
SEP | <1 | <1 | <1 | 1170 | <2 | <2 | 7 | 5 | 4.0 | .03 | | | | | 06 | 1 | <1 | <1 | 1200 | <2 | <2 | 17 | 2 | 2.0 | .01 | | | | | Value qualif
c See
k Coun | than
mated valu | used in t
r comment
r acceptab | his repor | t: | | | | | | | | | | # 09498400 PINAL CREEK AT INSPIRATION DAM, NEAR GLOBE, AZ—CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Water-quality measurements in the following table were made as part of the ADEQ Fixed-Station Network Program. The following analyses are quality-assurance samples processed during the 2002 sampling period and are defined in the introductory text section titled "Water-Quality Control Data". | Date | Time | Sample
type | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | |--------------|-----------------|-----------------|---|---|---|---|---|---|---|---|---|---|--| | JUN
11 | 1255 | 2 | 5.8 | 1 | 30.0 | .04 | <.03 | <.1 | .20 | .02 | <.020 | <.02 | <3 | | | BARIUM, | BERYL-
LIUM, | CADMIUM | CHRO-
MIUM, | COPPER, | IRON, | LEAD, | MANGA-
NESE, | NIČKEL, | ZINC, | | | | | | DIS- | | | | Date | SOLVED
(UG/L | | | | Date | AS BA) | AS BE) | AS CD) | AS CR) | AS CU) | AS FE) | AS PB) | AS MN) | AS NI) | AS ZN) | | | | | | (01005) | (01010) | (01025) | (01030) | (01040) | (01046) | (01049) | (01056) | (01065) | (01090) | | | | | JUN | | | | | | | | | | | | | | | 11 | <.5 | <1 | <.5 | <1 | <2 | <2 | <2 | <1 | <1 | <2 | | | | | Remark codes | used in t | his repor | t: | | | | | | | | | | | < -- Less than